Cross-section measurements with meson decay at rest neutrino beams

Jonghee Yoo Fermilab

WINP2015@BNL 5 February 2015

Potential pion-DAR neutrino sources

	LANCE	BNB	ISIS	SNS	MFL	ESS
Location	US(LANL)	US(FNAL)	UK(RAL)	US(ORNL)	JP(JPARK)	Sweden
Power	56kW	36kW	160kW	>1MW	1MW	5MW
Rep.Rate	-	5Hz	50Hz	60Hz	25Hz	50Hz
p-Energy	0.8GeV	8GeV	0.8GeV	1.4GeV	3GeV	1.3GeV
Beam T	Continuous	1.6us	200ns	380ns	1us	1.4us
Target	Various	Beryllium	Tantalum	Mercury	Mercury	Mercury
v-Proposal		CENNS CAPTAIN		OscSNS COHERENT	P56	

^{*} Daedalus (a larger future initiative)

Meson Decay-At-Rest Neutrino Source

• ν -flux is about 10^6 to 10^7 neutrinos/cm²/s/flavor (depends on the beam power and the dist. from target)

WHY (CORE-COLLAPSE) SUPERNOVA PEOPLE LIKE SNS?

This allows an experimental program to measure neutrino cross sections of interest for supernovae.

Segmented detector for **Solid targets** ⁵¹V, ²⁷Al, ⁹Be, ¹¹B, ⁵²Cr, ⁵⁶Fe, ⁵⁹Co, ²⁰⁹Bi, ¹⁸¹Ta

Homogeneous detector for Liquid targets ²H, ¹²C, ¹⁶O, ¹²⁷I

W. R. Hix, v@SNS, Oak Ridge, May 2012

Low Energy Neutrino Physics w/ Pion-DAR

Sterile neutrinos and neutrino oscillations

- Lower energy requires shorter distance for neutrino oscillation study
 - → neutrino oscillation effect within a detector

Coherent Elastic Neutrino Nucleus Scattering

- Background of dark matter search
- Neutron form factor
- Neutrino magnetic moment
- Test weak mixing angle
- Non Standard Model Interactions

Core collapse supernova physics

- Understanding the supernova explosion precess
- Supernova neutrino detection process
- Only a couple of v-N cross sections are measured in SN energy range

Neutrinos from Astrophysical Origin

Neutrinos from Astrophysical Origin

Detection of the SN Neutronization Burst: ve Sensitivity

Burst is only 20 ms long and is essentially all v_e

Mean energy of events is low, 10–12 MeV

IMB/Kamiokande detected higher energy cooling neutrinos, not neutrinos from the neutronization process

Potential for v_e detection in liquid argon by ELBNF

I.Stancu

Irreducible Background of Dark Matter Search

Cross-sections below 100MeV

- Inverse beta decay (IBD), v-e scattering known at few % level
- \bullet ¹²C is the only heavy nucleus with xsec well measured : ~10% level

Cross-section

- CEvNS process (Dark Matter Experiments)
- v on Argon nuclei (ELBNF Supernova detection)
- v on Lead (and iron) nuclei (HALO...)
- v on Oxygen nuclei (SuperK/HyperK...)
- Requests from the Supernova physicists ...

- Are neutrino sources $(\pi$ -DAR) available for these exp?
- Are detector technologies available?
- Independent measurement of the neutrino flux?

Coherent Elastic Neutrino Nucleus Scattering

CENNS Discovery Potential at BNB

7.50 discovery at 25 keV energy threshold

Phys. Rev. D 89, 072004 (2014)

Measured neutron spectrum at BNB (FNAL)

- SciBath (Indiana Univ. R.Tayloe)
- 82L volume mineral oil
- 768 wavelengh shifting fibers

Neutron flux measurement
 20m from the BNB target (backward)

MiniCLEAN for CENNS

MiniCLEAN detector at SNOLab

- Dark matter search
- Particle Astrophysics
- Single phase LAr detector
- Pulse shape discrimination
- Plan to run at SNOLab until 2017

MiniCLEAN detector at pion-DAR

- Perfect fit for CENNS measurement
- 500kg fiducial for CENNS
- Less stringent BG constraint for cross-section measurement (duty factor $\sim 10^{-5}$)
- ~10% measurement of Xsec

COHERENT: SNS Basement

Detectors for neutrino-induced neutrons Wish First v's at SNS!

Dual-phase LXe

HPGe

Neutrino Induced Neutrons (NIN)

- 25m from the target : $\sim 1.7 \times 10^6$ /cm²/s
- Scintillator inside CsI detector lead shield
- Liquid scintillator surrounded by lead (swappable) inside water shield

HALO: use the NIN for detection of SN

$$v_e$$
 + $^{208}\text{Pb} \rightarrow ^{208}\text{Bi*} + e^- \text{ CC}$
 v_e 1n, 2n emission

$$v_x$$
 + ²⁰⁸Pb \rightarrow ²⁰⁸Pb* + v_x NC

In, 2n, γ emission

Helium And Lead Observatory (HALO) at SNOLab: Supernova detector

-79 tonnes of lead instrumented with ³He neutron counters w/HPDE moderator + water shield

Argon Target: Theoretical Calculations

$$\nu_e + {}^{40}Ar \rightarrow e^- + {}^{40}K^*$$

- Shell-Model, Super-allowed F transition: Ragahvan, and Bahcall et al. (1986)
- Shell-Model, +GT transition: Ormand et al. (1996)
- Shell-Model, more GT transition: M. Bhattacharya et al. (1998)
- Random Phase Approximation (RPA) forbidden transitions: Langanke et al. (2003)
- Local Density Approximation (LDA): Singh et al. (2004)
- Hybrid Model, Shell-Model+RPA: T. Suzuki (2011)

FIG. 1. Level scheme of 40 Ar- 40 K relevant to ν_e capture in argon.

LArTPC: Low Energy Neutrino Interactions

$$\nu_e \text{ArCC}: \qquad \nu_e + {}^{40}Ar \rightarrow e^- + {}^{40}K^*$$

$$\bar{\nu}_e \text{ArCC}: \qquad \bar{\nu}_e + {}^{40} Ar \rightarrow e^+ + {}^{40} Cl^*$$

ES:
$$\nu_x + e^- \rightarrow \nu_x + e^-$$

$$\nu_x \text{ArNC}: \qquad \nu_x + {}^{40}Ar \rightarrow {}^{40}Ar^* + \gamma$$

Experimental challenges in LArTPC

- Events are elections and gammas
- Long track for CC events is ~10 wires and gammas and electrons "spots"
- Photo detection might help

Argon Target: CAPTAIN-BNB

- LANL LDRD project (arXiv:1309.1740)
 - R&D for particle interactions in TPC
 - Designed for easy transportation
 - Capacity: ~7700L (10ton full LAr)~5ton LArTPC active region
 - All cryogenic and instrumentation connections made through top head
 - Detector assembly and test in 2015
- The detector maybe placed at BNB off-axis and measure v cross-sections relevant to supernova physics 1-year operation at BNB (17kW)

Charged-current absorption $v_e + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^* \ (\sim\!250 \text{ events})$ Neutral-current excitation $v_x + {}^{40}\text{Ar} \rightarrow v_x + {}^{40}\text{Ar}^* \ (\sim\!100 \text{ events})$

- Fermilab PAC (Jan 2015)
 - CAPTAIN-BNB proposal waiting for the PAC response

Oxygen Target

• CC interactions

Langanke et al. (1996)

Summary

- Pion-DAR sources will provide high-intensity low energy neutrinos in the 10s of MeV range.
 - The sources under consideration are:
 SNS at ORNL, BNB at FNAL, MLF at J-PARK
- There are ongoing efforts for the cross-section measurements:
 Supernova neutrino-relevant
 Discover the CEvNS
- Flux uncertainty of neutrino source need improved study
- Success of the initial study would open up new opportunities of low energy neutrino physics

Backup

New Competition: J-PARK

J-Park (Japan) Material and Life Science Facility

- 3GeV rapid cycling synchrotron
 600ns pulsed beam spill
- Spallation neutron target
 Mercury target
- 1MW, 25 Hz rep-rate
- 80ns wide pulse, 540ns apart
- Proton On Target = 3×10²² POT /year
- 0.27 v-production per proton
- $v Flux = 6 \times 10^6 v / s/cm^2 (@17m)$

A Search for Sterile Neutrinos at J-PARK (P56)

T. Maruyama (2014 MLF-PAC)

J-PARK (P56) Background Measurement

Source	contents	#ev./50tons/4years (left; proposal, right; present)	comments
background	$\overline{\nu_e}$ from μ -	377 → 149	Baseline; 17m -> 24m additional cuts; 77%
	$^{12}\text{C}(\nu_{e}, e\text{-})^{12}\text{N}_{g.s.}$	38 → 10	
	Beam fast neutrons	Consistent with 0 0.2→ <8(90%CL UL)	Based on real meas.
	Fast neutrons (cosmic)	42 → 22	
	Accidental	37 → 20	Based on real meas.
signal		881 → 301	Δ m ² =3.0(left), 2.5(right)
		377 → 215	Δ m ² =1.2, sin ² 2 θ =0.003

T. Maruyama (2014 MLF-PAC) → Waiting for the PAC response

Nuclei in Collapsing Core

WHICH NUCLEI ARE PRESENT?

Neutron-Rich Nuclei with $A \le 120$ are present in collapsing core.

W. R. Hix, v@SNS, Oak Ridge, May 2012

Y00 27

Reactor vs DAR

What is the right place to look for Neutrino coherent scattering?

Nuclear reactor

or

DAR facility

Huge neutrino flux

- Just right energy range
 - Pulsed structure
- Characteristic time distribution
 - Multiple flavors
 - Wide mass range of targets

- Low energy: difficult to use heavy targets
 - No pulsed structure

Not as large flux as at reactor

Yuri Efremenko (WINP2015)

Supernova Detectors

NuSNS (Neutrinos at the SNS).

Conventional ~10 ton detectors w/ few MeV thresholds:

- -liquid target + PMTs
- -strawtube gas tracker+ target sheets
- -cosmic ray veto

Fermilab Booster Neutrino Beam (BNB) Target Building

